Tagged

AGENT

A collection of 85 posts

药物副作用问答系统
APPLICATION

药物副作用问答系统

虽然大多数人关注的是检索增强生成 (RAG) 对非结构化文本(例如公司文档或文件)的检索,但我对检索系统对结构化信息(尤其是知识图谱)的检索非常看好。GraphRAG 引起了很多关注,尤其是微软的实现。然而,在他们的实现中,输入数据是文档形式的非结构化文本,使用大型语言模型 (LLM) 将其转换为知识图谱。 在这篇博文中,我们将展示如何在包含来自 FDA 不良事件报告系统 (FAERS) 的结构化信息的知识图谱上实现检索器,该系统提供有关药物不良事件的信息。如果你曾经摆弄过知识图谱和检索,你的第一个想法可能是使用 LLM 生成数据库查询,以从知识图谱中检索相关信息来回答给定的问题。然而,使用 LLM 生成数据库查询仍在发展中,可能还不能提供最一致或最强大的解决方案。那么,目前有哪些可行的替代方案呢? 我认为,目前最好的解决方案是动态查询生成。这种方法不是完全依赖 LLM 来生成完整的查询,而是采用逻辑层,从预定义的输入参数确定性地生成数据库查询。可以使用具有函数调用支持的 LLM 来实现此解决方案。使用函数调用功能的优势在于能够向 LLM 定义它应该如何准备函数的结构化输入。这种方法确保查询生成过程是可控且一致的,

创业点子发生器
APPLICATION

创业点子发生器

创作者通常首先要努力的事情就是为他们的服务找到合适的利基创意。最好的方法始终是先找到一个微型 SaaS,它是 SaaS 的一个子集,专注于解决特定问题的小规模、高度专业化的应用程序。 但是你如何发现这些利基创意呢?为什么不让AI为你做这件事呢。在这个实验中,我整理了一个实用的应用程序,它可以帮助挖掘 Reddit、搜索引擎以找到利基创意。 在这篇博文中,我将分享如何构建这个 CrewAI 应用程序,该应用程序利用它来为微型 SaaS 生成利基创意。我们将深入研究应用程序结构、技术堆栈,并提供构建应用程序的分步指南。到最后,你将全面了解如何启动自己的 CrewAI 代理。 1、应用程序结构首先,让我们看一下应用程序结构。下面是概述我们应用程序关键组件的图表: 技术堆栈概述为了构建此应用程序,我们将使用各种工具和技术: Groq:用于服务大型语言模型 (LLM)。8B Llama3 模型:用于生成想法的核心模型。CrewAI:与 LangChain 工具一起使用,用于管理多个代理。Praw:用于从 Reddit