APPLICATION 用LLM提取文档中的数据 近十年前,我在 LinkedIn 著名的数据标准化团队担任机器学习工程师。从我加入到离开,我们仍然无法自动读取一个人的个人资料,也无法在所有语言和地区可靠地了解某人的资历和职位。 乍一看,这很简单。“软件工程师”已经足够清楚了,对吧?如果一个人只写“助理”,那他可能是一个资历较低的零售员工(如果他们在沃尔玛工作)或者一个高级律师(如果他们在律师事务所工作)。但你可能知道这一点——你知道什么是 Java 新手吗?什么是 Freiwilliges Soziales Jahr?这不仅仅是了解德语——它翻译为“自愿社会年”。但什么是代表这个角色的良好标准头衔?如果你有一个已知的职位列表,你会把它映射到哪里? 我加入了 LinkedIn,我离开了 LinkedIn。我们取得了进展,但即使是最简单的常规文本——一个人的简历,也难以理解。 1、曾经困难的事情变得微不足道你可能不会惊讶地发现,对于像 GPT-4 这样的大模型来说,这个问题很简单: 对于 GPT 来说很容易但是等等,我们是一家公司,
APPLICATION 商业文档多模态AI搜索 商业文档,例如复杂的报告、产品目录、设计文件、财务报表、技术手册和市场分析报告,通常包含多模态数据(文本以及图形、图表、地图、照片、信息图、图表和蓝图等视觉内容)。从这些文档中找到正确的信息需要对客户或公司员工提出的给定查询的文本和相关图像进行语义搜索。例如,公司的产品可能通过其标题、文本描述和图像来描述。同样,项目提案可能包括文本、说明预算分配的图表、显示地理覆盖范围的地图和过去项目的照片的组合。 准确快速地搜索多模态信息对于提高业务生产力非常重要。业务数据通常以文本和图像格式分布在各种来源中,这使得高效检索所有相关信息变得具有挑战性。虽然生成式 AI 方法(尤其是利用 LLM 的方法)增强了业务中的知识管理(例如,检索增强生成、图形 RAG 等),但它们在访问多模态、分散的数据方面面临限制。统一不同数据类型的方法允许用户使用自然语言提示查询各种格式。此功能可以使公司内的员工和管理层受益,并改善客户体验。它可以有多种用例,例如对相似主题进行聚类并发现主题趋势、构建推荐引擎、让客户参与更相关的内容、更快地访问信息以改进决策、提供特定于用户的搜索结果、增强用户交互以使其感觉更直观和自然,以及减少查找信息所花费的时间,仅举几例。
APPLICATION 用AI设计REST API 自 2022 年 11 月推出 ChatGPT 以来,人工智能 (AI) 工具一直在科技界掀起波澜。这些工具的形式和功能差异很大,但其中有一个不变的点,那就是它们旨在改善用户的工作流程和效率。 但是,如果不了解这些工具的工作原理以及如何最好地与它们交互,那么有效使用这些工具可能会很困难。大多数这些工具——尤其是基于 OpenAI 的生成式预训练转换器 (GPT) 模型的工具。这些是大型语言模型 (LLM),其工作方式基本上是接受输入提示并根据训练过的数据预测哪些文本最有可能遵循该提示。 OpenAI 的模型已经接受了大量数据的训练,包括软件工程、编码和系统设计信息。因此,使用这些模型构建的 AI 可以回答您在这些领域和许多其他领域中的问题。 基于 OpenAI Codex 模型的 GitHub Copilot 和 ChatGPT 等 AI 工具被开发人员广泛用于帮助他们编写代码和解决技术问题。然而,由于上下文限制,这些工具在处理更大的软件设计挑战时存在局限性。 这正是 smol developer
APPLICATION 药物副作用问答系统 虽然大多数人关注的是检索增强生成 (RAG) 对非结构化文本(例如公司文档或文件)的检索,但我对检索系统对结构化信息(尤其是知识图谱)的检索非常看好。GraphRAG 引起了很多关注,尤其是微软的实现。然而,在他们的实现中,输入数据是文档形式的非结构化文本,使用大型语言模型 (LLM) 将其转换为知识图谱。 在这篇博文中,我们将展示如何在包含来自 FDA 不良事件报告系统 (FAERS) 的结构化信息的知识图谱上实现检索器,该系统提供有关药物不良事件的信息。如果你曾经摆弄过知识图谱和检索,你的第一个想法可能是使用 LLM 生成数据库查询,以从知识图谱中检索相关信息来回答给定的问题。然而,使用 LLM 生成数据库查询仍在发展中,可能还不能提供最一致或最强大的解决方案。那么,目前有哪些可行的替代方案呢? 我认为,目前最好的解决方案是动态查询生成。这种方法不是完全依赖 LLM 来生成完整的查询,而是采用逻辑层,从预定义的输入参数确定性地生成数据库查询。可以使用具有函数调用支持的 LLM 来实现此解决方案。使用函数调用功能的优势在于能够向 LLM 定义它应该如何准备函数的结构化输入。这种方法确保查询生成过程是可控且一致的,
APPLICATION 创业点子发生器 创作者通常首先要努力的事情就是为他们的服务找到合适的利基创意。最好的方法始终是先找到一个微型 SaaS,它是 SaaS 的一个子集,专注于解决特定问题的小规模、高度专业化的应用程序。 但是你如何发现这些利基创意呢?为什么不让AI为你做这件事呢。在这个实验中,我整理了一个实用的应用程序,它可以帮助挖掘 Reddit、搜索引擎以找到利基创意。 在这篇博文中,我将分享如何构建这个 CrewAI 应用程序,该应用程序利用它来为微型 SaaS 生成利基创意。我们将深入研究应用程序结构、技术堆栈,并提供构建应用程序的分步指南。到最后,你将全面了解如何启动自己的 CrewAI 代理。 1、应用程序结构首先,让我们看一下应用程序结构。下面是概述我们应用程序关键组件的图表: 技术堆栈概述为了构建此应用程序,我们将使用各种工具和技术: Groq:用于服务大型语言模型 (LLM)。8B Llama3 模型:用于生成想法的核心模型。CrewAI:与 LangChain 工具一起使用,用于管理多个代理。Praw:用于从 Reddit
APPLICATION Farmer.chat:农业聊天机器人 全球约有 5 亿小农户:他们在全球粮食安全中发挥着关键作用。及时获取准确信息对于这些农民做出明智决策和提高产量至关重要。 “农业推广服务”为农民提供农业技术建议,并为他们提供必要的投入和服务以支持他们的农业生产。 仅在印度就有 30 万名农业推广人员,他们提供有关改进农业实践的必要信息,并帮助小农户做出决策。 但是,尽管推广人员的数量令人印象深刻,但数量不足以满足所有需求:他们与农民的互动比例通常为 1:1000。通过伙伴关系和技术接触农业推广人员和农民仍然是关键。 进入 GAIA 项目,这是一项由 CGIAR 率先发起的合作计划。 它通过专家支持计划将 Hugging Face 作为导师,并将 Digital Green 作为项目合作伙伴聚集在一起。 GAIA 有一个崇高的目标,那就是将多年的农业知识以研究论文的形式带到农民手中,这些研究论文在 GARDIAN 门户网站上精心维护。有近 46000 篇研究论文和报告,涵盖了数十年来全球不同作物的农业知识。 Digital Green 立即看到了开发由检索增强生成 (RAG) 驱动的智能聊天机器人的潜力,这些聊天机器人基于经过批准的精选信息。